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Closed Form Solution for Localized Modes
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The problem of localized vibration modes on a polymer chain with a symmetry breaking
defect is formulated as a finite sum of exponentiaily decaying waves on the polymer. Applying
a set of similarity and unitary transformations and using the singular value decomposition
technique, the size of the problem is reduced to reiatively small dimensions as compared ¢
the iarge size of the original set of equations for propagating modes on the chain. A modifica-
tion of the polynomial eigenvalue problem converts the algebraic system to a simple eigen-
value problem which may be diagonalized to give eigenvectors of different decaying waves for
an expansion set to describe general localized excitations. Application of proper boundary
conditions at the site of broken symmetry leads to determination of the frequencies o: the
localized modes and corresponding eigenvector expansion. Possible applications of the
algorithm to various defect probiems on a polymer chain are discussed and some preliminary
result on a particular defect are presented. L 1991 Academic Press. Inc.

1. INTRODUCTION

An infinite polymer chain, with infinitely repeated monomers, possesses a trans-
lational symmetry. This translational symmetry makes the calculation of vibrational
properties of the system easier. The chain can be viewed as a one-dimensional
periodic lattice with a monomer as its unit cell. This leads to a set of equations of
motion equal in number to the number of degrees of freedom N in a monomer. For
z typical polymer this number itself may be quite large. This set of equations of
motion has as its solutions harmonic propagating waves corresponding to the
infinite extent of the chain. These ideas, along with the harmonic approximation,
have long been used to calculate the vibrational phonon modes of DNA
biopolymers [1], in which N is at least 123. Such a calculation leads to the vibra-
tional spectrum of the system as a relation between the frequency @ of a mode and
the wave-vector k (in case of a double helical DNA polymer the equivalent of k s
the phase angle 8).

In real experimental situations the polymer chains are not infinite in length. The
free ends of a finite chain are expected to affect the observable properties of the
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system. Likewise a defect at some site on the polymer chain may ailso modify the
physical properties of the system. In homopolymers like DNA or RNA a defect at
some site is of much biological importance as it may play a significant role in the
biological function of the system. For example, a defect in the base sequence or a
missing base can give rise to completely different genetical information processing
in these important biopolymers. Therefore, a study of the vibrational properties of
such homopolyers or copolymers with some type of defects becomes important and
deserves very careful theoretical developments.

For a polymer chain with a defect the translational symmetry is broken and one
loses the simplifications arising from it. Symmetry breaking introduces new types of
motion with relatively large amplitudes at the defect site, decaying to zero far from
the defect. These localized excitations cannot be treated with the periodic boundary
conditions used for the infinite chain. The simplest example of such a defect is a
severed chain with a free end. Green’s function-based algorithms have been
developed for such a chain to calculate the localized end modes [2]. However,
these algorithms involve integrations over the full spectrum of infinite chain modes.
As a practical matter, the farther from the defect you study, the more finely spaced
the mesh of calculated infinite chain modes must be, thus quickly setting a limit on
applicability of the technique. Further, such Green’s function-based methods may
become very awkward to extend to other, more complex types of defects.

In a polymer chain with a defect, the interesting boundary conditions may be
quite different from those for a pure infinite polymer. In addition to propagating
waves of constant amplitude, a polymer chain supports exponentially growing or
decaying solutions showing a rather richer variety of frequencies and propagation
constants. One can, therefore, formulate the problem of localized excitations in
terms of a number of exponentially decaying waves with finite amplitudes at the
defect site, dying away to either side of the defect. It is expected that there will be
only a modest number of such solutions, determined by the number of degrees of
freedom linked to the neighbouring cells across the cell boundaries. This reduces
the effective computational size of the localized excitation problem to a value
relatively much smaller than N (the more complex possibilities for propagation
constant introduce compensatory complications, however). This type of formula-
tion can be applied to any set of boundary conditions at the defect, and the
corresponding solutions for the localized excitations can then be found algebraically
rather than through integration.

In this paper we present a closed form algorithm to calculate localized excitations
on a polymer chain with any type of defect. We use the ideas pointed out above and
construct general solutions as expansions in terms of a small basis set of exponen-
tially decaying waves. The general formulation presented in Section 2 is inde-
pendent of defect type. We present a general expansion for the excitations around
the defect and develop how to extract the localized modes by applying appropriate
boundary conditions. In Section 3 we present an application of this formalism to
the semi-infinite polymer chain. We formulate the boundary conditions at the
severed end of the chain and present closed form expressions which determine the
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localized end modes on such a polymer. In the last section we present our calcula-
tions and results for a particular polymer and display the behavior of a local mode
obtained through this calculation.

2. FORMULATION

Propagating harmonic oscillatory waves on an nfinite polymer chain are
described by

gq(m) =q(0) exp{ifm) e ", e

where s are N-dimensional vectors describing relative displacements of all the
atoms in a monomer. N =3M, where M is the number of atoms in one cell, = i
an integer cell index, and @ is a reative phase angle. Equations of moticn for the
system can be written in matrix form as

[A+exp(i6)B+exp(—if) BT —’1]g=0, {2

where A is the N x N matrix, of rank N, of Hooke’s law force constants within 2
unit cell. It is assumed that dynamical connections are of no greater range than one
monomer spacing aithough generalization of this restraint is possible. B is a matrix
of force constants for the connections between—say—cell 0 and cell 1. BT is the
transpose of B and represents connections across cells 0 and — 1. B and B” are both
very sparse singular matrices, each of rank # < N, w is the mode frequency, and i
is the identity matrix. This problem can be solved, to obtain mode frequencies anc
the corresponding eigenvector as functions of 8, by direct diagonalization of the
iotal force constant matrix [17].

The waves of Eq. {1) assume a certain boundary condition at # = 4 ., namely

exist, however. satisfying different boundary conditions. Waves with finite
amplitude at m=0, vanishing as m — + o can alsc be constructed. A corre-
sponding wave to Eq. (1) is then

()

q(rm)=q(0) exp{i{f + iz }m}, [

which decays to the right for positive values of 4.

For a polymer chain with a defect the translational symmetry breaking at the site
will lead to the existence of exponentially decaying waves along the chain on either
side. In this case the normal mode eigenvectors can be expressed as a sum of
solutions like Eq. (3},

Q(m)y=Y b,q,(0)exp{i(8, +id,m}, 143
1

Ly

where the 4, describe the decay of the constituent waves. The most generai possibl
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dynamical solution consists of vectors like (1) and (3) together, in which case the
terms in (4) represent end corrections to the bulk, infinite chain modes. When
solutions of the algebraic problem exist containing only terms as in (4), we have a
purely local mode. The algebraic problem describing the individual component
wave iS now written

[{A—wzl}ﬂ-zB-léBT]q:O, (5)

where
z=exp(i — 4) (6)

is a complex number describing the decaying waves. For each fixed frequency w
there exists a set of allowed z values z, and corresponding eigenvectors q,. At this
level the size of the problem is Nx N and the solution cannot be obtained by a
reltively simple diagonalization.

As the matrices B and BT describe relatively few connections across cell
boundaries, they are very sparse. Further, B and B” span complementary subspaces
in the N-dimensional space spanned by the complete system, since they represent
connections on the opposite sides of the central unit cell. This fact can be used to
reduce the effective dimensionality of the problem to a more manageable value. In
order to achieve this we need to write these matrices in upper block forms by a set
of similarity transformations. To the set of Egs. (5) we first apply an orthogonal
similarity transformation S, moving to a new representation in which B+B" is
diagonal,

i 1
St {A—w21}+zB+—BT]s-s*q=0, (7)

to obtain

1
{A’—w21}+zB’+tB’T] q=0. (8)

As a practical, computational matter, we next apply a permutation transformation
P, which rearranges the coordinate axes in such a way that B’ and B’" have all
their non-zero elements confined as much as possible to an upper left-hand corner
block matrix of small dimension 2# X 2, giving

1
| Ao+ Bo+2B] | 0o =0, ©)
where
Ay=P APT -, (10)
B,=P,BPT, (11)
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and

="Pq. {12y

Matrices B, and B} now have maximum dimensionality 2n corresponding o an
upper left block matrix of non-zero elements.

In Eq. (9) the matrices B, and By have their lower N — 2n rows of elements zero
and the matrix A, does not depend on z. Therefore, for any value of z, a vector g,
must be orthogonal to all of the lower N — 2» rows of the matrix A,. We proceed
by generating the space of all such vectors. To generate this type of vector we now
construct a singular, auxiliary matrix A, whose topmost 2n rows have all zero
elements and whose lower N —2n rows are those of the matrix A,. The needed
vectors g, span the null space of the matrix A, that is,

A;-qo=0. {13}

The vectors in the null space of a singular matrix can be generated by using the
singular value decomposition (VSD) technique [3]. The SVD applied to the matrix
A leads to a 2u-dimensional subspace, spanned by 2n N-dimensional vectors each
of which is individually orthogonal to all of the lower N — 2xn rows of A and there-
fore also to the corresponding rows of A,. Let us denote these N-dimensicnal
vectors by v; {i=1, 2, .., 2n). A vector q, satisfying Eq. {9} can thus be formed 2as
a binear combination of v;s writing

Thus substituting Eq. (14) in Eq. (9) one obtains

2n r 1 —g
Y LA0+2B0+:Bngiai=0. {15}

i=1

Since lower N —2n rows of B, and B are zero and the corresponding rows of A,
are orthogonal to all v;s, we can project the matrices By, B{, and A, on to the sub-
space of 2n vectors v;’s. Thus Eq. (15) takes the form, in this reduced subspace,

1
[A,+:Bl+sz]a=(}ﬁ {18}
where a is 2n-dimensional vector formed with a/s as its elements and

N

(Ay);= Z (Ag)il¥,)es {173
k=1
N

(By),= Z (Bo)u (¥ )e {18}

k=1
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N

Z Bg)u (V) (19)

for i, j=1,2,..,2n (v;); is the kth element of v,. One can see that the original
N x N problem as given bv Eq. (5) has been reduced to a relatively smaller problem
of size 2n x 2n.

As mentioned earlier, the matrices B and B span complementary spaces, and in
Eq. (8) we transformed the system to a basis where B+ BT is diagonal. Therefore
matrices B, and B, are singular in the complementary subspaces. In fact B, and B,
span n-dimensional complementary subspaces and each is singular in the subspace
spanned by the other. If B, and B, were non-singular, one could solve Eq. (16) by
direct application of the “polynomial eigenvalue” technique (4], but some prepara-
tion is first necessary. In order to sove Eq. (16) we first write it as

[22B, +zA,+B,]a=0. (20)

In order to reduce this to a simple eigenvalue problem we first need to write the
matrix B, in an upper (or lower) block diagonal form. Consider the eigenvalues
and eigenvectors of B,. The transformation U ~'B,U diagonalizes B,. Thus we
write Eq. (20) as

U '[z7B;+zA,+B,JU-U 'a=0 (21)
or
[z°B} +zA| +B,]a’ =0, (22)
where
B =U"'B,U, (23)

| is a diagonal matrix and has only » non-zero diagonal elements; corre-
spondingly,

=U"'A,U, (24)
B,=U"'B,U, (25)

and
a’=U"'a (26)

We now apply a permutation transformation P, which rearranges the coordinate
axes in such a way that all the non-zero (diagonal) elements of B} are confined to
a lower right-hand # x n block. This leads to

[2’B,+zA,+B,]b=0, (27)
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with
A,=P,A P, {28}
B,=P,B.PI, {29,
b=P.a, (30)
and
B,=P,BP!l. {31
B, now has the block diagonal form
|
0, \‘ 0,
By=| - IRt (32)
0, B,

L

where B, is an n x n diagonal non-singular matrix with the nonzero eigenvalues of
B. as its elements. 0, is the nth-order zero matrix. Now using a transformation for
singular polynomial eigenvalue systems [S] one can rewrite Eq. (27) as the eigen-
value problem

[zC+DJ]c=0, (13

where C and D are 3n x 3n matrices defined as

e , ﬂ
P8,
|
A, ———-
|
|
b
|
|
On | Bd | ﬁn
o] i I [ >
and
= ‘ =3
@,
i
B. }—-7
| -
D= 0, 135y
|
_________ 1o
| i
| |
0'1 I 0” ' 1'1
s | [ o

where [, is the » x n identity matrix.
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¢ is a 3n-dimensional vector defined as

c=Db, (36)

where D, is a 3n x 2n matrix defined by

D= |- (37)

and I,, is the 2»n x 2r identity matrix.

Equation (33) can now be solved first by inverting C and then diagonalizing
DC . The matrix C can be singular only if a 2n x 21 matrix C’, whose first # rows
are exactly the same as the corresponding rows of A, and whose lower n rows are
equal to the corresponding rows of B, is also singular [5]. Diagonalizing DC ™!
by the standard method finally gives the permitted z values and the corresponding
vectors, ¢. Since the matrix B, is singular, the matrix D is also singular and has n
zero eigenvalues. As a result of this, the number of acceptable non-zero solutions
for z values is exactly equal to 2n, the effective dimensionality of the matrix B, in
Eq. (9). These 2n solutions separate into two groups of »n solutions each. One set
describes waves decaying exponentially to the right of the defect site and the other
set waves decaying to the left of the defect site. Let us label these solutions by z;
and z; with vectors ¢] and ¢, respectively, as acceptable solutions of Eq. (33).
Let 6 and 4} represent the values of § and A corresponding to z} in accordance
with the defining equation (6).

Once we have the set of vectors ¢ as solutions of Eq. (33) for the values z,
applying all the transformations in the reverse order, one can obtain the set of
vectors a; which are solutions of Eq. (16) for the corresponding z values. These
transformations can be written as

af =UPIGZcy, (38)
where G is a 2n x 3n matrix defined as
F=FrDp), (39)
with
Fr=[DF)'DF]1, (40)

DI being the same as matrix D, with z replaced with - f.
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Using the deiinition, Eq. (14) one then obtains the vectors qF for solutions of
Eg. (9) as

= (af).v.. {41}

2 70T

q

S

R
My

Finally one obtains for the solution of the original problem Eg. (5) the vectors ¢
as
4 =SPiqg;. {42}

The vector q; represents an exponentially decaying wave of frequency w and com-
plex phase factor {8 —id ). A general solution of Eq. {5) for a decaying mods of
frequency @ can be formed as a linear combination of all the 2» solutions obtained
for the = values. Thus the general (localized) solutior. Q(ms, ) at frequency w. if

one exists, can be written as
n
Qm,w)= Y [bfqfexp{m(i0 —A)}+b,q; exp{mlif, +4;, )] (43
;=1

where b are numerical coefficients chosen to fit the apprprpiate boundary condi-
tion at the defect site. The solution given by Eq. (43) is a general solution for
decaying waves with frequency . However, all the solutions for any frequency are
not allowed to propogate along the chain. Application of the appropriate boundary
conditions, balancing all the symmetry breaking forces at the defect site, determines
the frequency and corresponding solution for the localized mode around the defect
site. In the next section we discuss a simple application of the algorithm deveiop in
this section.

3. SEMI-INFINITE POLYMER CHAIN

As an example of the application of the algorithm, we discuss the calculation of
localized end modes on a semi-infinite polymer chain. This system has been studied
before [2] and provides a valuable comparison for our results. Consider an infinite
chain divided in two semi-infinite halves by cutting all the connections across the
cell boundary between cells 0 and —1. We seek localized end modes on the right
half of the chain beginning at cell 0. As the left half of the chain is totally dis-
connected, any forces coming from the severed part of the chain must be zero. This
defines the appropriate boundary conditions at the cut end in terms of the nermal
interactions. Further, as only the right half of the chain exists, only the basis
functions z; and q; for the waves decaying to the right will be of interest. In this
case a general solution for a local mode with frequency w on the half chain can be
written

Q*(mw)=Y bSa;(z )" (44

=Y biqfexp{m(if; —4)} (45
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Substituting this solution in the original N x N equations of motion and then
equating all the forces from the missing left haif of the chain at the Oth cell to zero,
one gets the boundary condition

Y BTq; exp{—(i07 —4))}b} =0. (46)

A=1

If there is any frequency for which this boundary condition can be satisfied with
any b #0 that frequency is a normal mode frequency for a localized excitation, an
end mode. The corresponding algebraic system is

BXb* =0, (47)

where B is the n x n matrix defined by

N N
(B )su=Y Y (@f)FBT),(q7 ) exp{— (0} —47)}. (48)
i=1 j=1
The vector b™ comprises the coefficients 4. The existence of a solution is signalled
by the vanishing of det |B| or any of its eigenvalues. This finally leads to the com-
plete solution for the eigenvector (Eq. (44)) of the localized end mode.

It should be noted that the localized mode problem in this formalism has been
reduced to nxn size as compared to the large size Nx N of the original set of
equations of motion. Further, this method gives the complete eigenvectors of the
localized modes directly and allows computation of behavior arbitrarily deep into
the chain. Our earlier investigations [2] into this problem could yield this informa-
tion in principle, but only at the computational cost of more and more finely spaced
infinite chain solutions. This method also lends itself to investigations of other sorts
of defects. Once the basis functions qi are obtained, different boundary solutions
can be readily expanded, and closed form expressions written down. Unfortunately,
a scan on o is still required.

4, CALCULATION AND RESULTS

We have made numerical calculations, based on the method described in the last
two sections, for possible localized end modes on a semi-infinite Poly(dA )-Poly(dT)
B-form DNA polymer. In this case N =123 and » turns out to be 14. An interesting
frequency range runs from 70.00 to 73.55cm ', a band gap in the normal mode
spectrum of the infinite, perfect Poly(d4)-Poly(dT) polymer with the force constant
model used in the present calculation. In the range of frequencies scanned, most of
the eigenvalues of the boundary condition matrix B as well as its determinant are
real. In Fig. 1 we have plotted the quantity

h{w)=Sign[v(i)] xlog[1 + |v(i)] x 10%] (49)
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Fic. 1. Variation of the real-part of one of the eigenvalues v{i) of the ma:rix B, shown as the
quantity fio)=Sign{v(i)] * log[ 1 + |v(/)] x 10*] plotted as a function of [requency w.

as a function of frequency w; v(f) is the eigenvaiue (real) of the matrix B whica
changes sign within the frequency range stated above. None of the other eigen-
values of this matrix pass through zero in this range of frequencies. Figure 2
displays the quantity

Sign(D) log{1 + |D| 150}

as a function of frequency w, where D is the determinant (real) of the matrix B .
From these two figures one can see that the plotted quantities vanish at the
frequency 70.41 cm ~!, indicating that the boundary condition Eq. {47) is satisfied
for this frequency. Thus we have found a local mode frequency. In Table I we list
the values of 47,0, and the corresponding coefficients 5. which satisfy the
boundary condition Eq. (47) for this frequency.

1.8

12—

Cc6—

Sign (D) x log [ 1+ 1DI]
o
(o]

!
700 70.5 71.0 71.5 720
wlem™)
FiG. 2. Variation of the determinant D (real) of the matrix B, shown as the quantity SigntDj»
log[1 +|D}] as a function of frequency w.
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TABLE I

Values of 41,0, and b} which satisfy the boundary conditions
for the local mode at 70.41 cm ™!

A a5 0} Re(b;) Im(55")
1 —15.816439 -—-0.048032 0.013309 0.066880
2 —15.180337 0.007213 —0.009246 —0.053948
3 —7.011092 —0.000052 —0.009248 —0.077890
4 —4.715403 0.000006 —0.027370 ~0.199343
5 —4.518871 0.210324 —0.137135 0.045323
6 —4.518871 —0.210324 0.144305 0.008052
7 —3.540579 1.167920 —0.057425 0.585608
8 —3.540579 —1.167920 0.208143 0.549201

9 —2.672197 0.000000 —0.025715 —0.194507

10 —1.412505 0.542678 0.015540 —0.204332

11 - 1.412505 —0.542678 —0.068583 -0.193134

12 —0.847147 0.000000 0.038675 0.289859

13 —0.685792 —0.962110 0.047807 —0.010317

14 —0.685792 0.962110 —0.048806 0.002576

Once the coefficients b; are known one can construct the vectors Q(#), from
Eq. (45), for various cells. We chose a typical coordinate i and calculated the ratio

ay(m)= &) (51)

(Q*(0))

which measures the displacement of the coordinate i in cell m relative to the same
coordinate in cell 0. For the mode at 70.41 cm ' this ratio turns out to be essen-
tially real and decays rapidly with increasing cell number. To display this behavior
we have plotted in Fig. 3 the quantity

amp(m) = Sign(Re[a;(m)]) x log{1 + |a;(m)| x 10°}. (52)

We find the behavior of amp(m) as expected for a localized mode. It oscillates, with
decreasing amplitude, for the first few cells and then dies out. The amplitude of
a;(m) decays to about 1% of its value at the cut within five cells. Thus it is clear
that this is a well-defined local mode confined within a few cells of the free end. The
eigenvector Q*(0) at the cut end for this local mode has a strong component along
the eigenvector of the nearest band edge at 70.02 cm 1.

This example shows a single local mode in this band gap. Similar scans of other
ranges of frequency w show other local modes. To find out all possible local modes
the whole range of frequencies covered by the spectrum of the infinite perfect
polymer should be scanned.

This completes our exposition of an algorithm for calculating the localized modes
on a polymer chain with a defect. We have formulated the problem in terms of
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F16. 3. Variation of the quantity amp{m) with the cell number m.

exponentially decaying waves along the chain. By applying the singular vaiue
decomposition technique, we have reduced the effective size of the problem to a
relatively small value. Using a set of similarity transformations and a transforma-
tion for polynomial eigenvalue systems, the system of equations is reduced to a
simple eigenvalue equation which gives closed form solutions for the exponentiaily
decaying waves on the chain. Application of appropriate boundary conditions.
balancing the resultant symmetry breaking forces at the defect site, leads to the
determination of the local mode eigenfrequencies and the corresponding eigenvec-
tors. An important feature of the method is that it gives the complete eigenvectors
of the localized modes, leading to a complete physical picture of the moticns
characteristic of the local mode. This feature and the closed form solution in
reduced space make this method potentially more useful as compared to other
existing methods based on vperturbative expansion or Green's function based
algorithms.

5. DIscussIoN

In summary, we have developed a method to solve the N x N guadratic eigen-
value problem of the form

[B+zA+BT]g=¢, {

W
[9%)

where B and BT are very sparse singular matrices. By using a series of similarity
transformations and using the polynomial eigenvalue technique ['5] we have been
able to reduce the size of the problem from N x N to # xn, where # i1s the rank of
B or BT. We have obtained experience running the code based on this method for
a model DNA polymer. where N=123. On sssentially equivalent sysiems.
VAX 750, ISI, and Mac Il machines, the code runs satisfactorily and leads (o

el
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physical solutions for the localized end modes for a semi-infinite DNA polymer.
Hence this algorithm represents a practical solution to a thorny numerical problem
and is not merely an exercise in computer theory. For DNA, the size of the problem
is reduced to 14 x 14 compared to the original 123 x 123,

As mentioned earlier the method described in this paper can be successfully
coded and applied to various types of defects on homopolymers and copolymers
with localized defects, where a finite set of local mode solutions will appear as solu-
tions. Another possible application of the method may be in surface physics, for
example, for obtaining the localized surface modes in a three-dimensional semi-
infinite solid, where a band of frequencies would appear as a final solution of the
problem. We have not developed this application.
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